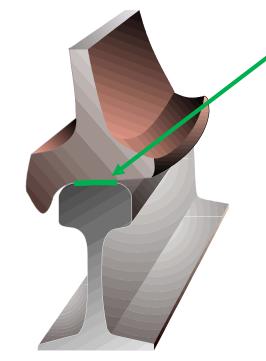
Development and Implementation of a Water-Based Friction Modifier Train-Borne Dispensing System for Transit

Jackie Butterfield – Lead Applications Engineer

L.B. Foster Rail Technologies UK

RAIL TRANSIT SEMINAR · JUNE 6

Contents


- Benefits of Top of Rail Friction Management
- KELTRACK[™]
- Equipment KOB
- Development
 - Nozzle and air requirements
 - Consumables
 - Hardware
- Field Tests

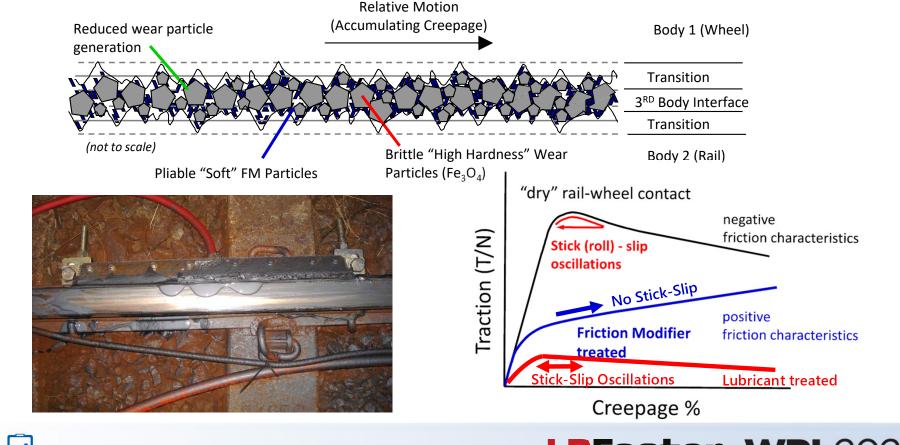
RAIL TRANSIT SEMINAR · JUNE 6

Benefits of Top of Rail Friction Management

Target CoF: ~0.35

CoF = Coefficient of Friction

RAIL TRANSIT SEMINAR · JUNE 6


Top-of-Rail / Wheel Tread

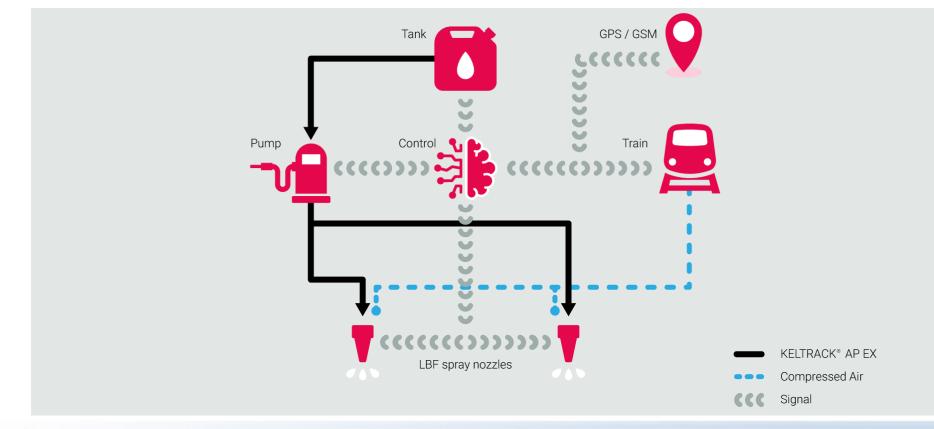
Benefits:

- Reduced Rail / Wheel Wear
- Improved Fuel Efficiency
- Reduced Lateral Forces
- Lowers Derailment Potential
- Mitigates RCF Development
- Reduces Vehicle Hunting
- Mitigates Noise
- Mitigates Corrugation Damage

JB0 missing corrugation from TOR benefits Jackie Butterfield, 2022-06-15T14:49:42.642

"KELTRACK Treated" Wheel / Rail Interface

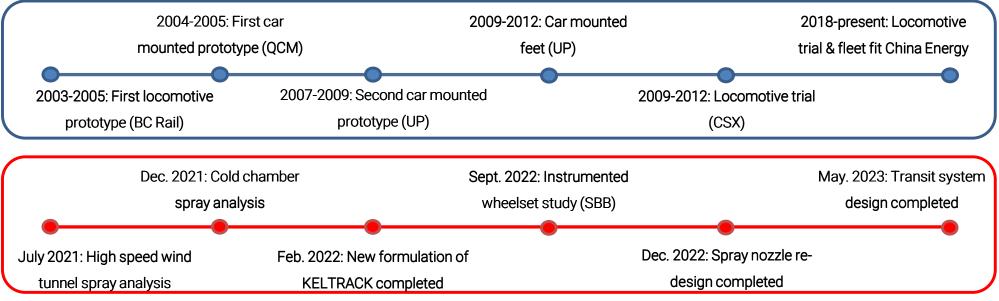
What is KOB?


- *KELTRACK[®] On-Board (KOB)* is a vehicle mounted spray system.
- It dispenses water-based drying Friction Modifier material directly to the top-of-rail.
- The primary benefits include reduction of:
 - Noise, corrugation, rolling contact fatigue, wheel wear, rail wear, and fuel consumption.
- The system is specifically designed to work with *KELTRACK® AP EX* friction modifier.
- *KOB SL* is designed for use on passenger rolling stock.

RAIL TRANSIT SEMINAR · JUNE 6

System Architecture

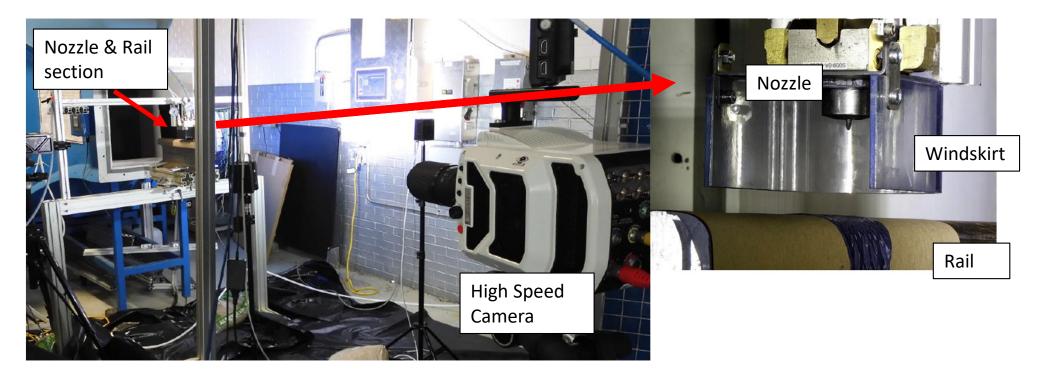
KOB Technology Development - Background


- 2018 Emerging Opportunity identified in on-board sprayable FM solutions in the Transit sector.
- The current state of the technology was freight focused; several development areas were identified to enable fit into the transit space:
 - 1. Air compressors on transit vehicles have a lower volumetric capacity and often lower operating pressures reduce air requirements
 - 2. Eliminate the need for heated elements to allow KELTRACK to function in environments below 0°C reducing complexity, cost and power requirements.
 - 3. To fit in to a typical transit vehicle, the space required of the dispensing cabinet and spraying nozzle must be dramatically reduced.

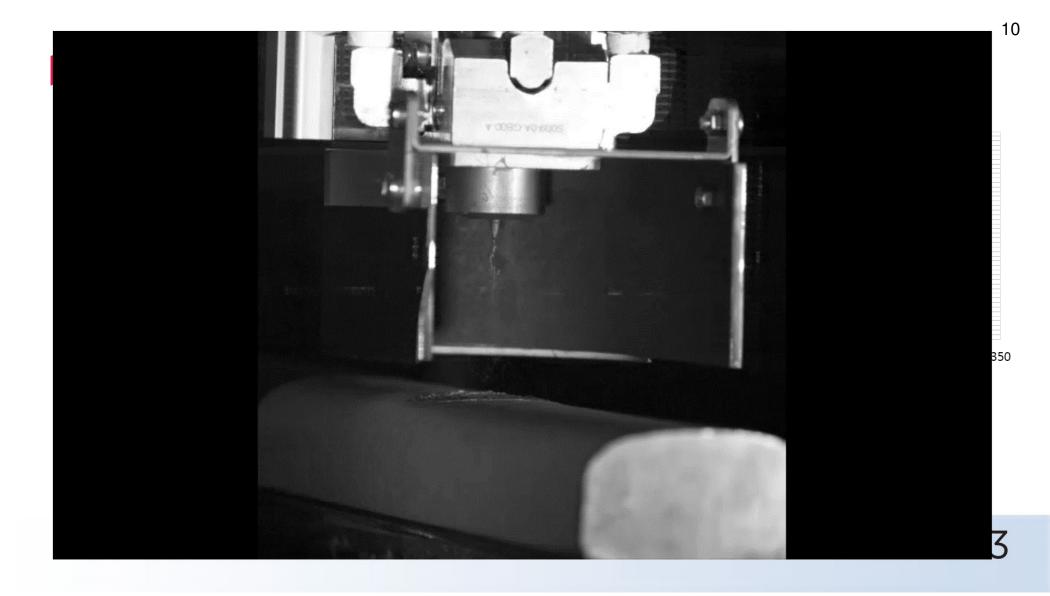
Smaller, cheaper, more reliable. A development program was commenced.

RAIL TRANSIT SEMINAR · JUNE 6

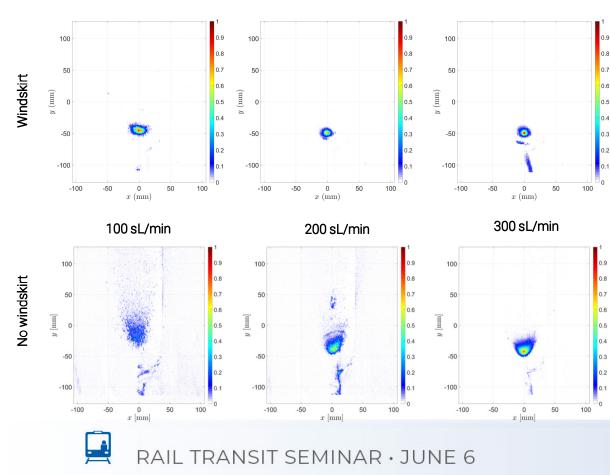
KOB Technology Development - Timeline

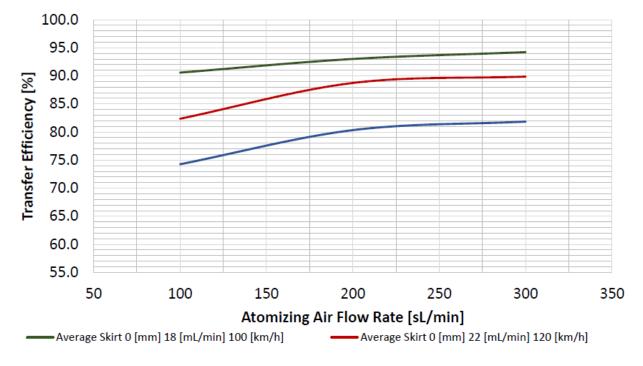


- Early years development focused on Class 1 railroad sector.
- Company R&D spending constrained 2012-2018, KOB development program paused during this period.
- 2018 onwards there has been a focus on evolving the technology for the transit market.
- 2021-present has seen intense development activity to progress the technology to a market-ready state for Transit



RAIL TRANSIT SEMINAR · JUNE 6


KOB Technology Development – Spray Analysis



KOB Technology Development – Spray Analysis

- laser sheet imaging plots to assess overall intensity and spread of product on railhead.
- Atomized air flow varied (100, 200, and 300 standard liters per minute of air) to observe the effects.
- Wind velocities were varied (up to 120km/h)
- Impact of "windskirt" assessed
- spray pattern concentration increased with increasing airflow; results acceptable even at low flow conditions with windskirt.
- Without windskirt results undesirable leading to poor transfer efficiency to railhead

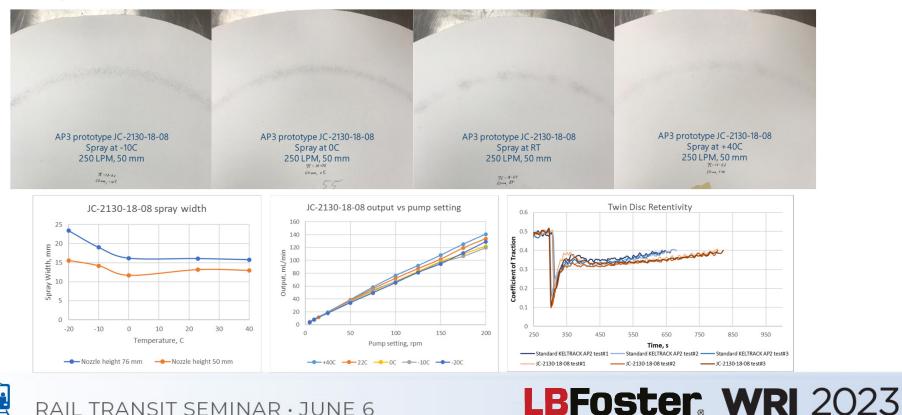
KOB Technology Development – Spray Analysis

Average No Skirt 0 [mm] 22 [mL/min] 120 [km/h]

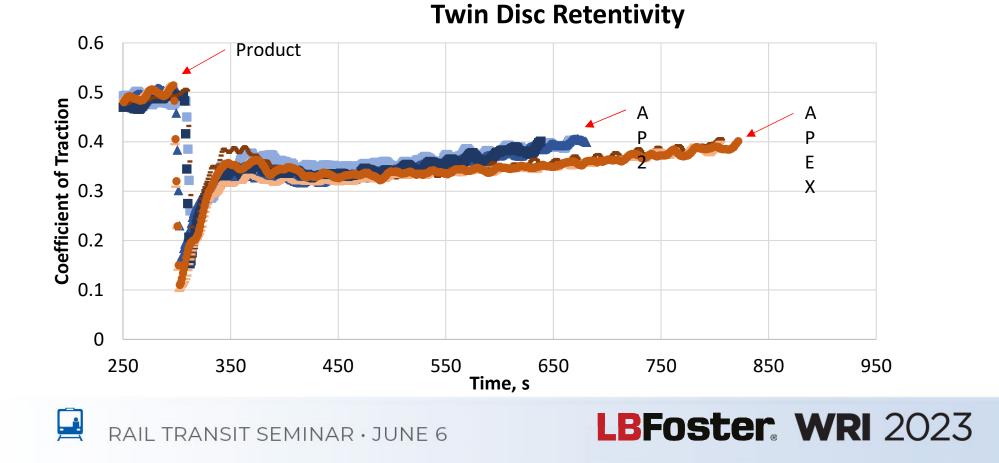
RAIL TRANSIT SEMINAR · JUNE 6

KOB Technology Development – Consumable Development

Several prototype formulations of KELTRACK were developed in-house and reviewed against key criteria:


- Must show positive friction and stable intermediate friction levels as a Friction Modifier (via twin disc testing)
- Stability of spray width versus temperature
- Stability of spray density/ ability to atomize versus temperature
- Stability of output volume versus temperature
- Good product stability, must achieve minimum 12-month storage without product degradation
- Must be water-based and classified as non-hazardous

The prototypes had a mandatory operating temperature range -20°C to +40°C.


RAIL TRANSIT SEMINAR · JUNE 6

KOB Technology Development – Consumable Development

14

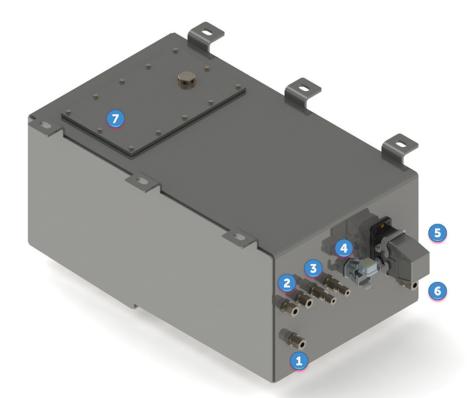
AP EX – Improved retentivity

AP EX - Features

- Low freezing point of -25°C.
- Longer lasting "intermediate friction levels" based on twin disc retentivity testing.
- Positive friction characteristics.
- Stable application rates in the temperature range of -20°C to +40°C.
- Good sprayability through KOB hardware in the temperature range of -20°C to +40°C.
- Good product stability based on accelerated settling tests.
- The product does not propagate steel corrosion.
- The product does not contain nonylphenol-ethoxylate (NPEO) additives or other highly hazardous ingredients. It is classified as non-hazardous and environmentally benign.

RAIL TRANSIT SEMINAR · JUNE 6

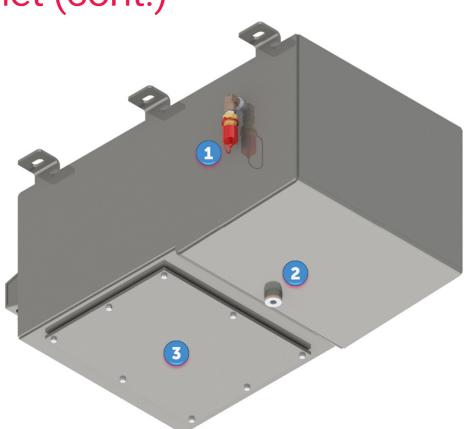
Features & Benefits


Feature	Benefits
• Low freezing point of -25°C.	• No heating required, simpler design, lower cost.
• Longer lasting "intermediate friction levels" based on twin disc retentivity testing.	• Fewer vehicles need to be equipped to provide system coverage.
Positive friction characteristics.	Effectively mitigates corrugation & noise.
 Stable application rates in the temperature range of -20°C to +40°C. 	Consistent all-season performance.
• Good sprayability through KOB hardware in the temperature range of -20°C to +40°C.	• Consistent all-season performance and longer nozzle maintenance intervals.
Good product stability based on accelerated settling tests.	Longer shelf life.
The product does not propagate steel corrosion.	• Safe for use on steel wheels and rail.
• The product does not contain nonylphenol-ethoxylate (NPEO) additives or other highly hazardous ingredients. It is classified as non-hazardous and environmentally benign.	• Safe for use in urban areas and near waterways.

RAIL TRANSIT SEMINAR · JUNE 6

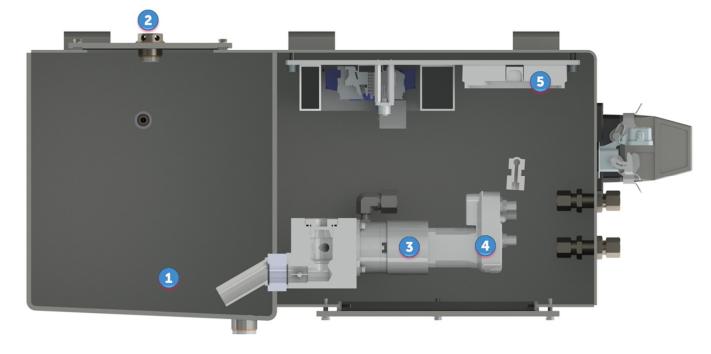
Dispensing & Controls Cabinet

- (1) Air In (from vehicle)
- (2) Atomizing Air Out (to left & right nozzles)
- (3) Control Air Out (to left & right nozzles)
- (4) Human & Electrical Interface Port
- (5) Power In (from vehicle)
- (6) KELTRACK Out (to left and right nozzles)
- (7) 20 L Reservoir with removable top access panel



RAIL TRANSIT SEMINAR · JUNE 6

Dispensing & Controls Cabinet (cont.)


(1)KELTRACK Bulk Filling Port

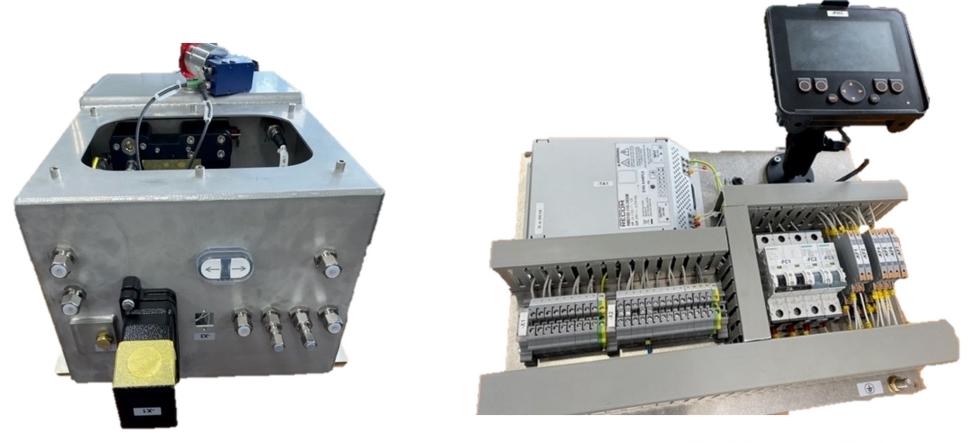
- Allows automatic filling and shut-off when used with bulk filling equipment.
- (2) KELTRACK Drainage Port
- (3) Removable bottom access panel
 - Allows access to electrical and pump/motor components.

RAIL TRANSIT SEMINAR · JUNE 6

Dispensing & Controls Cabinet (cont.)

(1) KELTRACK Product Reservoir Standard 20L capacity for KOB SL

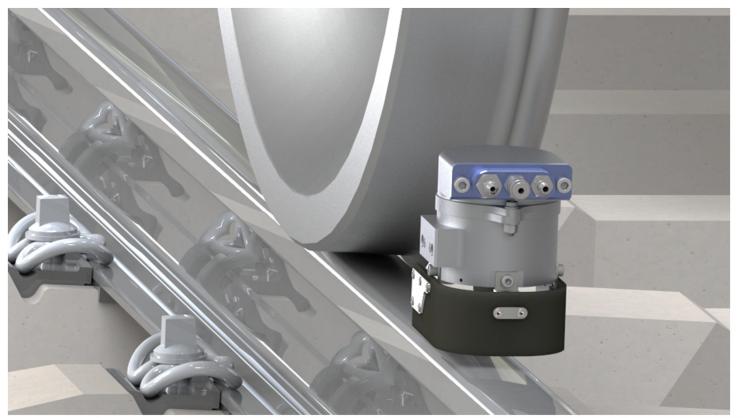
(2) Breather Valve

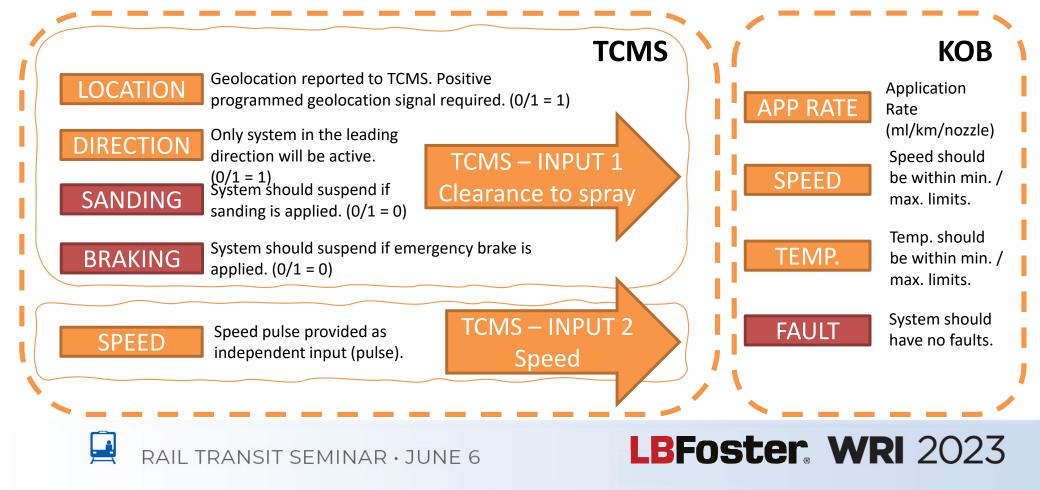

(3) Dispensing Pump

(4) Dispensing Motor

(5) System Controller

RAIL TRANSIT SEMINAR · JUNE 6


Dispensing & Controls Cabinet (cont.)



Spraying Nozzles

Operation Logic

24

Technical Specifications

	KELTRACK® On-Board SL		
Air	6-10 bar Nominal: 500L/min; Minimum: 350L/min ISO 8573-1		
Power	24 VDC	(125W)	
	Dimensions (mm)	Mass (kg)	
Spray Nozzle	171(w)x135(d)x157(h)	1.8	
Dispensing & Control	712(w)x326(d)x324(h) 58 (empty) 82 (full)		
Electrical & HMI	400(w)x300(d)x205(h) 8.6		
Tank Volume	20L		
Signal Interface	Speed Braking* Sanding* Direction* Location*		
Approvals	EN 61373 (Shocks & Vibration) EN13749 (Bogie Frame Loading) EN44545-2 (Fire)	EN50121-3-2 (Gen. Elec) EN60068 EN50125-1 (EMC)	

RAIL TRANSIT SEMINAR · JUNE 6

Field Tests - Braking & Traction Study (SBB)

Goal:

- Analyse performance of KELTRACK AP versus oilbased and grease-based products with respect to braking.

Outcomes:

- KELTRACK frictional values were in-line with optimal conditions (0.3-0.35). Good alignment to reference values.
- Adhesion for KELTRACK aligned well with reference values.
- Tractive effort with KELTRACK was unchanged from reference conditions.

		Product 1	Product 2	Product 3
				(Keltrack)
0	nsion of stopping d 15km/h (E-brake) f		m/h)	
Tread brakes	R	Unchanged	Unchanged	Unchanged
Disc brakes	R	+7%	+7%	Unchanged
	R+Mg	+11%	Unchanged	Unchanged
Electric brakes	lectric brakes E		+39%	+4%
Percentage exter (Final speed 120)	nsion of acceleratir m/h)	ig distance		
Trailer load: 87t (two coaches)	~+24%	~+18%	Unchanged
Trailer load: 111t	(three coaches)	~+54%	~+48%	Unchanged

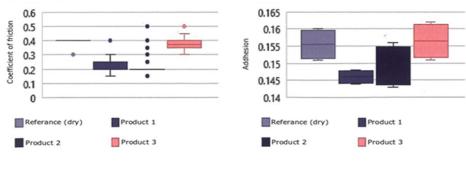
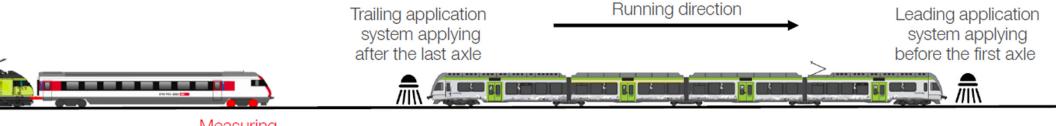


Fig.4 Coefficient of friction

Fig. 5 Effective adhesion wheel-rail during braking

RAIL TRANSIT SEMINAR · JUNE 6

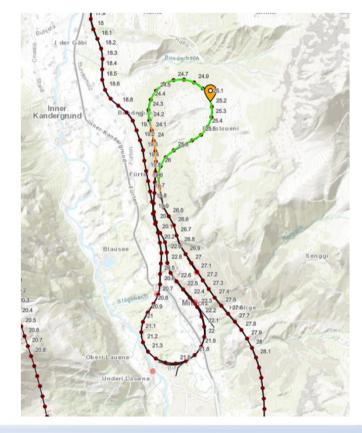
Prototype Vehicle


Instrumented Wheelset Study

Goal:

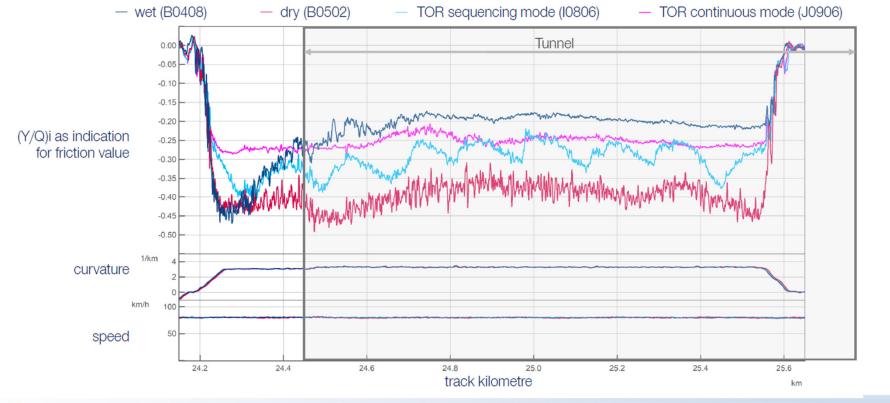
- Analyse and quantify the performance of KELTRACK AP in reducing wheel / rail forces in narrow curves.

Method:


- Running dynamics measurement based on EN 14363
 - Measuring wheel / rail forces with measuring wheelsets in all three dimensions: vertical force (Q), lateral force (Y), and longitudinal force (T).
 - Y/Q of leading wheelset is used as indication of friction coefficient.
- Curves measured were 250-400m radii., Cant deficiency up to 130mm.
- Speed consistent at 80km/h.

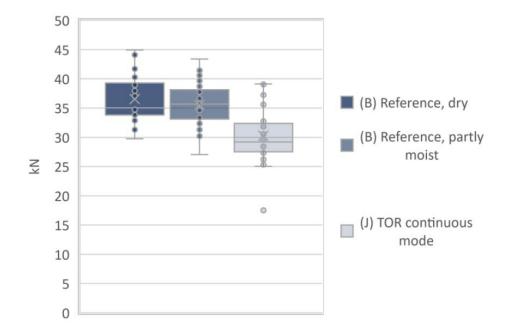
Application Strategies

Active System	Application Mode	Application Amount
Leading System	Sequencing Mode: Sequentially left and right nozzle active	20g / min
Leading System	Continuous Mode: Continuously applying from left and right nozzle	12g/ min


curve radius \approx 300 m curve length \approx 1300 m tunnel section shortly after the start of the full curve running speed \approx 80 km/h

RAIL TRANSIT SEMINAR · JUNE 6

Calculated Friction Measurements



RAIL TRANSIT SEMINAR · JUNE 6

Lateral Forces

Outcomes:

- Reductions in lateral force in excess of 16-20%.
- Independent measurements using push tribometer friction values in the range 0.3-0.35.
- Future work seeks to characterise performance with a range of application volumes.

KOB SL – Next Steps

- 1. Commercial offers(s) into operators in 2023
- 2. Further field trial work in Switzerland (RCF based analysis)
- 3. Further trial work in NA to assess application strategy
- 4. Scaled field trial unit for efficient data and testing capability (push trolley)
- 5. Continuing links with academia for next generation of technology (hydrophobic nozzle materials etc.)
- 6. Qualification of nozzle vs. ERTMS with major axle counter supplier

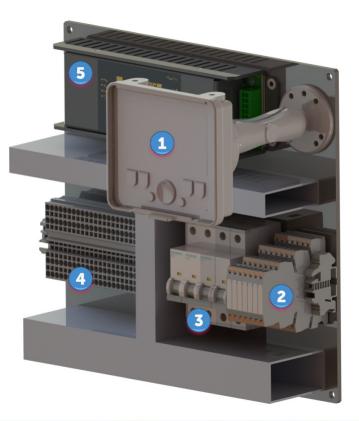
RAIL TRANSIT SEMINAR · JUNE 6

Conclusions

- Benefits of application of Water Based Friction Modifiers well established
- On-board application has clear benefits in terms of safety, maintenance and efficiency
- Refined design for freight systems for transit vehicles
- Development of all aspects of equipment and consumables
- Field tests using push tribometer and instrumented wheelset
 - Reduction in friction and lateral forces validated
- Future development work planned

RAIL TRANSIT SEMINAR · JUNE 6

Thank you

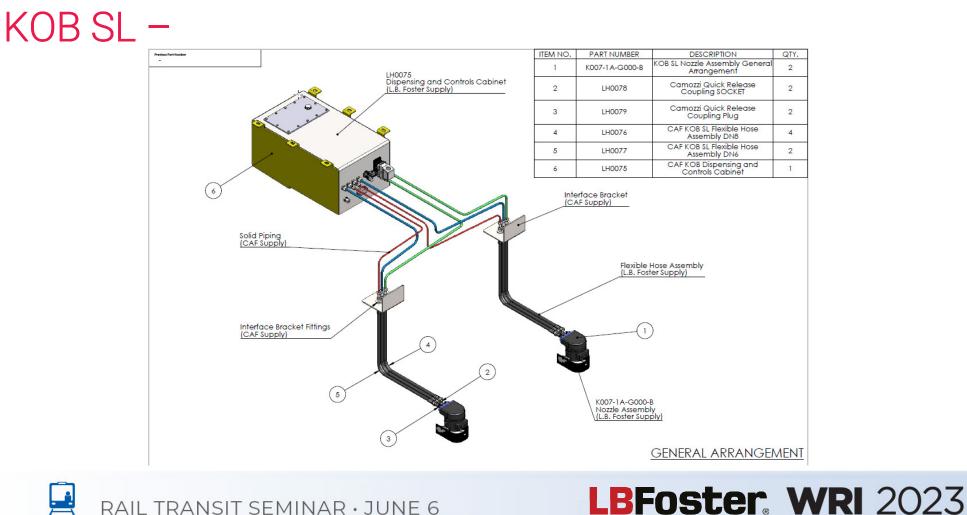

Human & Electrical Interface

(1) Human Machine Interface (HMI)

- Allows the operator to review the system status, perform tests, and modify system parameters etc.
- Mounted in the vehicle cab.
- (2) Optocouplers
 - Voltage free couplers used to transfer signals (fault, warning, speed, spray etc.) between the vehicle and KOB SL.
- (3) Circuit Breakers
- (4) Wiring Terminals
- (5) DC/DC Converter
 - Used to transform vehicle DC supply down to 24VDC.

RAIL TRANSIT SEMINAR · JUNE 6

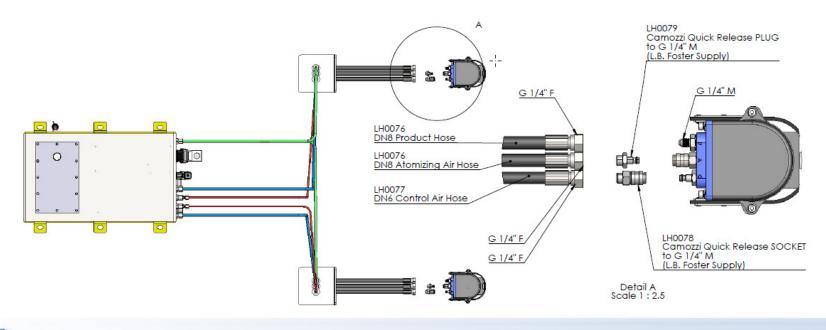
Human & Electrical Interface (cont.)


Vehicle signals			Ready for operation					
V	90 km/h	С	learance	e to spray L		F	ault	
Air 3	3750 mbar		learance	to spray R		Lev	el lov	V
Rate:		P	Pump 12 °C		Tar	ık		
30 m	30 ml/km/rail		44.9 ml/min					
	SPRAY ON L		2500 mbar		72 9	%		SPRAY ON R
ON	OF	F	OK			AC	CK	

PARAMETER ENABLE SPRAYING 220			220
Minimum speed V <value -=""> Spraying off [km/h]</value>			
Maximum speed 100			
Minimum temperature T <value -=""> Spraying off [°C] -10</value>			
Vehicle tube pressure p <value -=""> Spraying off [mbar] 3500</value>)
	💧 ок 🔻		

FAULTS AIR/PUMP			
Tank level below MIN		1	
Air pressure low		0	
Medium pressure high, nozzle blocked L ->	ACK	0	
Medium pressure high, nozzle blocked R -> ACK			
Stepper motor/drive fault -> ACK 0			
RESET COUNTER	ACK		

RAIL TRANSIT SEMINAR · JUNE 6



KELTRACK® AP EX - Technical Specifications

	Method	Unit	KELTRACK AutoPilot EX
Label			AP3
Appearance	-	-	Gray Thixotropic Gel
Base	-	-	Water
Viscosity at 77 °F (25 °C)	Brookfield RV5 at 80 rpm	сР	1,300-1,600
Density at 77 °F (25 °C)	ASTM D1475	g/cm³	1.06 - 1.08
Freezing Point	ASTM D2386-97	°C	-25
рН	ASTM E70	-	9.4 - 9.8
Operating Temperature Range	-	°C	-20 to +40
Friction Coefficient		-	Intermediate friction coefficient (0.3 - 0.4)
Retentivity	L.B. Foster Twin Disc Methodology	-	Excellent
Friction Characteristics	Dischiethodology	-	Positive friction characteristics
Corrosion Mitigation	L.B. Foster Method		Excellent
Aquatic Toxicity	OECD 203	-	(Non-toxic to freshwater fish, LC50 > 100 mg/L (ppm)
Flammability	-	-	Non-Flammable
Environment	-	-	Not classified as hazardous to aquatic life

Nozzle Connections

NOZZLE CONNECTIONS

